

Comune di Tradate

TAVOLA

02.01

PROGETTO ESECUTIVO

AFFIDAMENTO DEI SERVIZI DI PROGETTAZIONE DEFINTIVA, ESECUTIVA E COORDINA-MENTO DELLA SICUREZZA IN FASE DI PROGETTAZIONE CON FACOLTA' DI AFFIDAMENTO EX ART. 63 c. 5 D.Lgs. 50/2016 DEL SERVIZIO DI DIREZIONE LAVORI E COORDINAMENTO DELLA SICUREZZA IN FASE DI ESECUZIONE, RELATIVAMENTE ALL'INTERVENTO DI RIGENERAZIONE URBANA DI CAPANNONE INDUSTRIALE PER LA CREAZIONE DI UN NUOVO MUSEO DELLA MOTOCICLETTA FRANCA, RISTORANTE, AULE STUDIO BIBLIOTECA PARCHEGGI E SISTEMAZIONI ESTERNE.

CUP C68I21000260001

PROGETTISTI

Arch. Giorgio Pala

Project Building Art s.r.l.

Project Building Art s.r.l.

Via Pavia, 22 - 00161 Roma
P. Iva/C.F. 10355621003

AMMONISTRATORE UNICO Arch. Pasquale Barone

Ing. Giuseppe CERVAROLO

COLLABORATORI

Arch. Viola D'Ettore Arch. Cecilia Marati Arch. Paolo Monesi Arch. Michele Preiti Arch. Maria Simonetti Ing. Ilario Greco Ing. Rosario Ierardi

Ing. Cosimo Mellone

RUP

DIREZIONE LAVORI

FLARORATO

Edificio Museo - Relazione ai sensi del Cap. 10.2 delle NTC 2018 - Stato di Fatto

SCALA

DATA

GILIGNO 2023

			0100	NO 2023	
REV.	DATA	DESCRIZIONE REVISIONE	ESEGUITO	CONTROLLATO	APPROVATO
01	MARZO 2023	EMISSIONE PROGETTO DEFINITIVO			
02					
03					
04					

Comune di TRADATE

Provincia di Varese

RELAZIONE

Ai sensi del Cap. 10.2 delle NTC 2018 ANALISI E VERIFICHE SVOLTE CON L' AUSILIO DI CODICI DI CALCOLO

Adequamento Museo STATO DI FATTO

Indice generale

TIPO	ANAL	ISI S	VOLTA
-------------	-------------	-------	--------------

ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

VALIDAZIONE DEI CODICI

PRESENTAZIONE SINTETICA DEI RISULTATI

INFORMAZIONI SULL' ELABORAZIONE

GIUDIZIO MOTIVATO DI ACCETTABILITA'

Tipo Analisi svolta

• Tipo di analisi e motivazione

L'analisi per le combinazioni delle azioni permanenti e variabili è stata condotta in regime elastico lineare.

Per quanto riguarda le azioni simiche, tenendo conto che per la tipologia strutturale in esame possono essere significativi i modi superiori, si è optato per l'analisi modale con spettro di risposta di progetto e fattore di comportamento. La scelta e' stata anche dettata dal fatto che tale tipo di analisi e' nelle NTC2018 indicata come l' analisi di riferimento che può essere utilizzata senza limitazione di sorta. Nelle analisi sono state considerate le eccentricità accidentali pari al 5% della dimensione della struttura nella direzione trasversale al sisma.

• Metodo di risoluzione della struttura

La struttura è stata modellata con il metodo degli elementi finiti utilizzando vari elementi di libreria specializzati per schematizzare i vari elementi strutturali. In particolare le travi ed i pilastri sono stati schematizzati con elementi asta a due nodi deformabili assialmente, a flessione e taglio, utilizzando funzioni di forma cubiche di Hermite. Tale modello finito ha la caratteristica di fornire la soluzione esatta in campo elastico lineare, per cui non necessita di ulteriore suddivisioni interne degli elementi strutturali.

Per gli elementi strutturali bidimensionali (pareti a taglio, setti, nuclei irrigidenti, piastre o superfici generiche) è stato utilizzato un modello finito a 3 o 4 nodi di tipo shell che modella sia il comportamento membranale (lastra) che flessionale (piastra). Tale elemento finito di tipo isoparametrico è stato modellato con funzioni di forma di tipo polinomiale che rappresentano una soluzione congruente ma non esatta nello spirito del metodo FEM. Per questo tipo di elementi finiti la precisione dei risultati ottenuti dipende dalla forma e densità della MESH. Il metodo è efficiente per il calcolo degli spostamenti nodali ed è sempre rispettoso dell'equilibrio a livello nodale con le azioni esterne.

Nel modello sono stati tenuti in conto i disassamenti tra i vari elementi strutturali schematizzandoli come vincoli cinematici rigidi. La presenza di eventuali orizzontamenti e' stata tenuta in conto o con vincoli cinematici rigidi o con modellazione della soletta con elementi SHELL. I vincoli tra i vari elementi strutturali e quelli con il terreno sono stati modellati in maniera congruente al reale comportamento strutturale.

In particolare, il modello di calcolo ha tenuto conto dell'interazione suolo-struttura schematizzando le fondazione superficiali (con elementi plinto, trave o piastra) come elementi su suolo elastico alla Winkler.

I legami costitutivi utilizzati nelle analisi globali finalizzate al calcolo delle sollecitazioni sono del tipo elastico lineare.

• Metodo di verifica sezionale

Le verifiche sono state condotte con il metodo degli stati limite (SLU e SLE) utilizzando i

coefficienti parziali della normativa di cui al DM 17/01/2018.

Le verifiche degli elementi bidimensionali sono state effettuate direttamente sullo stato tensionale ottenuto, per le azioni di tipo statico e di esercizio. Per le azioni dovute al sisma (ed in genere per le azioni che provocano elevata domanda di deformazione anelastica), le verifiche sono state effettuate sulle risultanti (forze e momenti) agenti globalmente su una sezione dell'oggetto strutturale (muro a taglio, trave accoppiamento, etc..)

Per le verifiche sezionali degli elementi in c.a. ed acciaio sono stati utilizzati i seguenti legami:

- Legame parabola rettangolo per il cls
- Legame elastico perfettamente plastico o incrudente a duttilità limitata per l'acciaio

Combinazioni di carico adottate

Le combinazioni di calcolo considerate sono quelle previste dal DM 17/01/2018 per i vari stati limite e per le varie azioni e tipologie costruttive. In particolare, ai fini delle verifiche degli stati limite, sono state considerate le combinazioni delle azioni di cui al § 2.5.3 delle NTC 2018, per i seguenti casi di carico:

SLO	SI
SLD	SI
SLV	SI
SLC	NO
Combinazione Rara	SI
Combinazione frequente	SI
Combinazione quasi permanente	SI
SLU terreno A1 – Approccio 1/ Approccio 2	SI-CON NTC18 SOLO APPROCCIO 2
SLU terreno A2 – Approccio 1	NON PREVISTA DALLE NTC18

• Motivazione delle combinazioni e dei percorsi di carico

Il sottoscritto progettista ha verificato che le combinazioni prese in considerazione per il calcolo sono sufficienti a garantire il soddisfacimento delle prestazioni sia per gli stati limite ultimi che per gli stati limite di esercizio.

Le combinazioni considerate ai fini del progetto tengono infatti in conto le azioni derivanti dai pesi propri, dai carichi permanenti, dalle azioni variabili, dalle azioni termiche e dalle azioni sismiche combinate utilizzando i coefficienti parziali previsti dalle NTC 2018 per le prestazioni di SLU ed SLE.

In particolare per le azioni sismiche si sono considerate le azioni derivanti dallo spettro di progetto ridotto del fattore q e le eccentricità accidentali pari al 5%. Inoltre le azioni sismiche sono state combinate spazialmente sommando al sisma della direzione analizzata il 30% delle azioni derivanti dal sisma ortogonale.

Origine e Caratteristiche dei codici di calcolo

Produttore	S.T.S. srl
Titolo	CDSWin
Versione	Rel. 2022
Nro Licenza	34880

Ragione sociale completa del produttore del software:

S.T.S. s.r.l. Software Tecnico Scientifico S.r.l. Via Tre Torri nº11 – Complesso Tre Torri 95030 Sant'Agata li Battiati (CT).

• Affidabilità dei codici utilizzati

L'affidabilità del codice utilizzato e la sua idoneità al caso in esame, è stata attentamente verificata sia effettuando il raffronto tra casi prova di cui si conoscono i risultati esatti sia esaminando le indicazioni, la documentazione ed i test forniti dal produttore stesso.

La S.T.S. s.r.l., a riprova dell'affidabilità dei risultati ottenuti, fornisce direttamente on-line i test sui casi prova liberamente consultabili all'indirizzo:

http://www.stsweb.it/area-utenti/test-validazione.html

Validazione dei codici

L'opera in esame non è di importanza tale da necessitare un calcolo indipendente eseguito con altro software da altro calcolista.

Presentazione sintetica dei risultati

Una sintesi del comportamento della struttura è consegnata nelle tabelle di sintesi dei risultati, riportate in appresso, e nelle rappresentazioni grafiche allegate in coda alla presente relazione in cui sono rappresentate le principali grandezze (deformate, sollecitazioni, etc..) per le parti piu' sollecitate della struttura in esame.

Tabellina Riassuntiva delle % Massa Eccitata

Il numero dei modi di vibrare considerato (6) ha permesso di mobilitare le seguenti percentuali delle masse della struttura, per le varie direzioni:

DIREZIONE	% MASSA
X	100
Y	100
Z	NON SELEZIONATA

Tabellina Riassuntiva degli Spostamenti SLO/SLD

Stato limite	Status Verifica
SLO	VERIFICATO
SLD	VERIFICATO

Tabellina riassuntiva delle verifiche SLU

Tipo di Elemento	Non Verif/Totale	STATUS
Travi c.a. Fondazione	0 su 205	VERIFICATO
Travi c.a. Elevazione	59 su 503	NON VERIFICATO
Pilastri in c.a.	0 su 41	VERIFICATO
Shell in c.a.	0 su 0	NON PRESENTI
Piastre in c.a.	0 su 3	VERIFICATO
Aste in Acciaio	0 su 0	NON PRESENTI
Aste in Legno	0 su 0	NON PRESENTI
Zattera Plinti	0 su 0	NON PRESENTI
Pali/Micropali (Plinti)	0 su 0	NON PRESENTI
Micropali (Travi/Piastre)	0 su 0 Tipologie	NON PRESENTI

Tabellina riassuntiva delle verifiche SLE

	Tipo di Elemento	Non Verif/Totale	STATUS
--	------------------	------------------	--------

Travi c.a. Fondazione	0 su 205	VERIFICATO
Travi c.a. Elevazione	37 su 503	NON VERIFICATO
Pilastri in c.a.	0 su 41	VERIFICATO
Shell in c.a.	0 su 0	NON PRESENTI
Piastre in c.a.	0 su 3	VERIFICATO
Aste in Acciaio	0 su 0	NON PRESENTI
Aste in Legno	0 su 0	NON PRESENTI
Zattera Plinti	0 su 0	NON PRESENTI
Pali	0 su 0	NON PRESENTI

Tabellina Riassuntiva della Ridistribuzione Plastica

	Numero totale Travi a	Numero Travi con coeff. di
	cui si e' applicata la	ridistribuzione plastica
	ridistribuzione plastica	inferiore al limite di Norma
Ridistribuzione Plastica Travi in C.A.	NON ESEGUITA	NON ESEGUITA

Tabellina Riassuntiva delle Verifiche di Gerarchia delle Resistenze

	Non Verif/Totale	STATUS
Gerarchia Trave Colonna c.a.	0 su 0	NON ESEGUITA
Gerarchia Trave Colonna acc.	0 su 0	NON ESEGUITA

Tabellina Riassuntiva delle Verifiche delle Unioni Metalliche

	Non Verif/Totale	STATUS
Telai	0 su 0	NON PRESENTI
Reticolari	0 su 0	NON PRESENTI

Tabellina riassuntiva delle PushOver

Numero PushOver	PgaSLO/Pga81%	PgaSLD/Pga63%	PgaSLV/Pga10%	PgaSLC/Pga5%
NON PRESENTE				

NON PRESENTE			
NON PRESENTE			
NON PRESENTE	·		
Min. PgaSL/Pga%			

Tabellina riassuntiva verifiche Murature

Tipo Verifica	Non Verif/Totale	Coeff. Sicur. Minimi	STATUS
Maschi – Statiche	0 su 46		VERIFICATO
Maschi – Sisma Ortog.	0 su 46	17.73	VERIFICATO
Maschi – Sisma Parall.	6 su 46	.56	NON VERIFICATO
Architravi	26 su 75	0	NON VERIFICATO
Meccanismi Locali	0 su 0		NON PRESENTE

Tabellina riassuntiva verifiche Murature Armate

Tipo Verifica	Non Verif/Totale	Coeff. Sicur. Minimi	STATUS
Maschi – Statiche	0 su 0		NON PRESENTE
Maschi – Sisma Ortog.	0 su 0		NON PRESENTE
Maschi – Sisma Parall.	0 su 0		NON PRESENTE
Architravi	0 su 0		NON PRESENTE

Tabellina riassuntiva verifiche Pareti CLS Debolmente Armate

Tipo Verifica	Non Verif/Totale	Coeff. Sicur. Minimi	STATUS
Maschi – Statiche	0 su 0		NON PRESENTE
Maschi – Sisma Ortog.	0 su 0		NON PRESENTE
Maschi – Sisma Parall.	0 su 0		NON PRESENTE

Architravi	0 su 0	NON PRESENTE

Tabellina riassuntiva della portanza

	VALORE	STATUS
Sigma Terreno Massima (kg/cmq)	1.19	
Coeff. di Sicurezza Portanza Globale	1.02	VERIFICATO
Coeff. di Sicurezza Scorrimento	15.4	VERIFICATO
Cedimento Elastico Massimo (cm)	5.2	
Cedimento Edometrico Massimo (cm)	7.49	
Cedimento Residuo Massimo (cm)	NON CALCOLATO	

Tabellina riassuntiva della Stabilita' Globale della struttura

Numero della combinazione di carico	CARICO CRITICO NON CALCOLATO
Valore del moltiplicatore dei carichi	CARICO CRITICO NON CALCOLATO

Informazioni sull'elaborazione

Il software è dotato di propri filtri e controlli di autodiagnostica che intervengono sia durante la fase di definizione del modello sia durante la fase di calcolo vero e proprio.

In particolare il software è dotato dei seguenti filtri e controlli:

- Filtri per la congruenza geometrica del modello generato;
- Controlli a priori sulla presenza di elementi non connessi, interferenze, mesh non congruenti o non adeguate;
- Filtri sulla precisione numerica ottenuta, controlli su labilità o eventuali mal condizionamenti delle matrici, con verifica dell'indice di condizionamento;
- Controlli sulla verifiche sezionali e sui limiti dimensionali per i vari elementi strutturali in funzione della normativa utilizzata;
- Controlli e verifiche sugli esecutivi prodotti;
- Rappresentazioni grafiche di post-processo che consentono di evidenziare eventauli anomalie sfuggite all'autodiagnistica automatica.

In aggiunta ai controlli presenti nel software si sono svolti appositi calcoli su schemi semplificati, che si riportano nel seguito, che hanno consentito di riscontrare la correttezza della modellazione effettuata per la struttura in esame.

Giudizio motivato di accettabilità

Il software utilizzato ha permesso di modellare analiticamente il comportamento fisico della struttura utilizzando la libreria disponibile di elementi finiti.

Le funzioni di visualizzazione ed interrogazione sul modello hanno consentito di controllare sia la coerenza geometrica che la adeguatezza delle azioni applicate rispetto alla realtà fisica.

Inoltre la visualizzazione ed interrogazione dei risultati ottenuti dall'analisi quali: sollecitazioni, tensioni, deformazioni, spostamenti e reazioni vincolari, hanno permesso un immediato controllo di tali valori con i risultati ottenuti mediante schemi semplificati della struttura stessa.

Si è inoltre riscontrato che le reazioni vincolari sono in equilibrio con i carichi applicati, e che i valori dei taglianti di base delle azioni sismiche sono confrontabili con gli omologhi valori ottenuti da modelli SDOF semplificati.

Sono state inoltre individuate un numero di travi ritenute significative e, per tali elementi, è stata effettuata una apposita verifica a flessione e taglio.

Le sollecitazioni fornite dal solutore per tali travi, per le combinazioni di carico indicate nel tabulato di verifica del *CDSWin*, sono state validate effettuando gli equilibri alla rotazione e traslazione delle dette travi, secondo quanto meglio descritto nel calcolo semplificato, allegato alla presente relazione. Si sono infine eseguite le verifiche di tali travi con metodologie semplificate e, confrontandole con le analoghe verifiche prodotte in automatico dal programma, si è potuto riscontrare la congruenza di tali risultati con i valori riportati dal software.

Si è inoltre verificato che tutte le funzioni di controllo ed autodiagnostica del software abbiano dato tutte esito positivo.

Da quanto sopra esposto si può quindi affermare che il calcolo è andato a buon fine e che il modello di calcolo utilizzato è risultato essere rappresentativo della realtà fisica, anche in funzione delle modalità e sequenze costruttive.